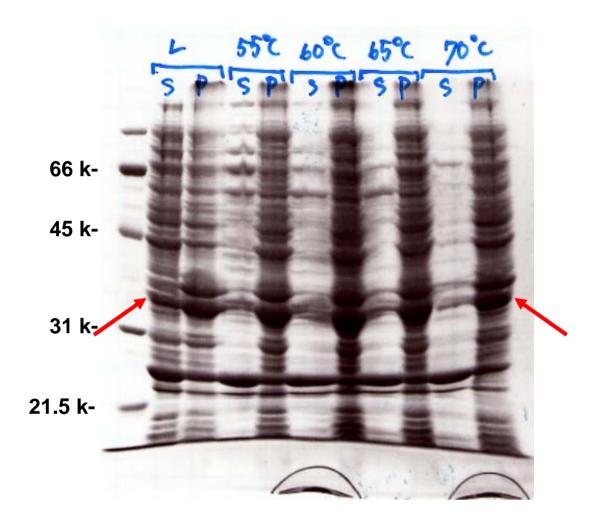
Example 5

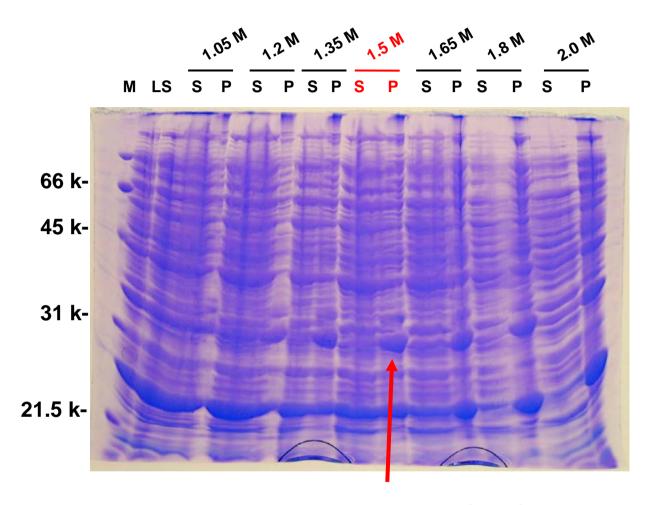

Protein category	Other categories / Transposon-related functions				
M.W.	Wet weight of 24 g E. coli cells				
Theoretical pI	10.4	10.4 Purified protein			
$\varepsilon_{\rm M}~({\rm M}^{\text{-1}}{\rm cm}^{\text{-1}})$	39,300 Purification time		8 days		

(Methods)

cell suspension in 20 mM Tris-HCl, 50 mM NaCl, 5 mM β-mercaptoethanol, pH 8.0, 140 ml sonication (OUT PUT 8, DUTY 50 and 1 min \times 10) without heat-treatment $40,000 \text{ rpm} \times 1 \text{ h at } 4^{\circ}\text{C}$ sup. ppt. $40,000 \text{ rpm} \times 1 \text{ h at } 4^{\circ}\text{C}$ ammonium sulfate precipitation (desalting) HiTrap Heparin (affinity column) (concentration) HiLoad 16/60 Superdex 75 prep. grade (gel filtration column) HiPrep 26/10 Desalting (desalting column) (concentration) protein concentration determination

Step 1: Checking the Heat-Treatment Condition

(SDS-PAGE)



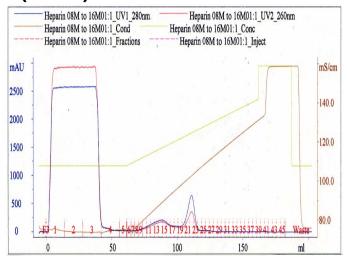
target protein (35 k)

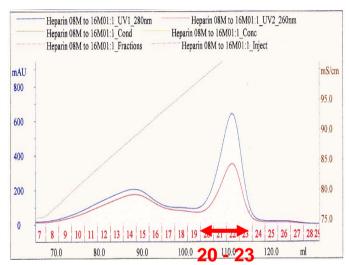
We tested the condition for heat-treatment at 55°C, 60°C, 65°C and 70°C. Almost all target protein was precipitated by 55°C heat-treatment.

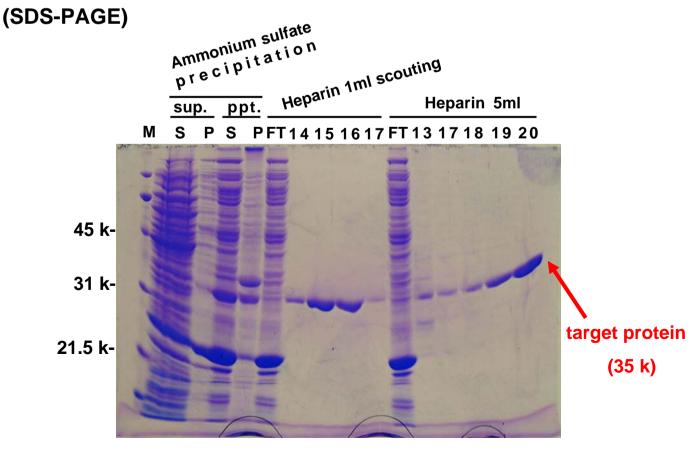
Step 2: Ammonium Sulfate Precipitation

(SDS-PAGE)

target protein (35 k)

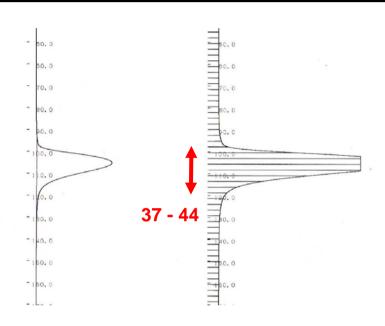

This protein was precipitated at $1.5 \text{ M} (\text{NH}_4)_2 \text{SO}_4$. After the centrifugation, the precipitate was tried to dissolve in 10 mM Na phosphate, 1 M NaCl, pH 7.0. The target protein has tendency to aggregate, and about 1/3 of the target protein could not be solubilized. (See SDS-PAGE in Step 3).


The solubilized protein was desalted on a desalting column equilibrated with 10 mM Na phosphate, 0.8 M NaCl, pH 7.0.

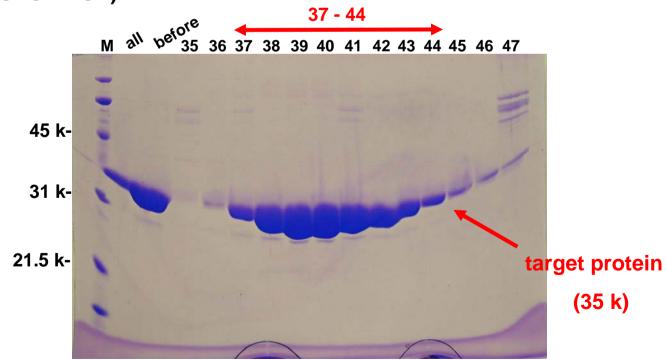

Step 3: HiTrap Heparin (5ml)

Flow rate	4 ml / min		
Gradient (volume)	radient (volume) $0.8 \rightarrow 1.6 \text{ M NaCl } (20 \text{ column volumes})$		
Buffer	A = 10 mM Na phosphate, pH 7.0 B = 10 mM Na phosphate, 2.0 M NaCl, pH 7.0		
Eluted Conc.	1.2 M NaCl		

(Chart)

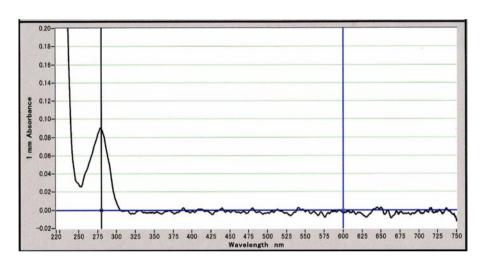


Fractions 20 to 23 were pooled.

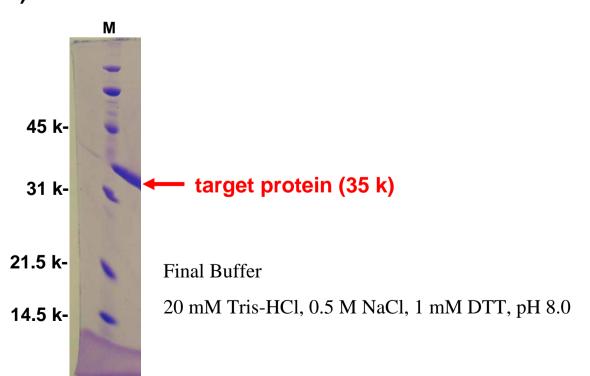

Step 4: Superdex 75 (120 ml)

Flow rate	0.5 ml / min
Buffer 20 mM Tris-HCl, 1 M NaCl, pH 8.0	
Elution volume	52 ml

(SDS-PAGE)



Fractions 37 to 44 were pooled, and desalted on a desalting column equilibrated with 20 mM Tris-HCl, 0.5 M NaCl, pH 8.0. After desalting the fractions were concentrated from 28 ml to 1.1 ml using VIVA SPIN 10,000 MWCO.


Step 5: Protein Concentration

$\epsilon_{ m M}$	Abs. (280 nm)	Dilution rate	1 M.W.	M.W.	Protein conc. (mg/ml)	Vol. (ml)	Total protein (mg)
39,300	0.09	100	2.3×10^4	35,204	8.2	1.1	9.0

(UV spectrum)

(SDS-PAGE)

Without heat-treatment,

Step 1: Ammonium sulfate precipitation

Step 2: Affinity column

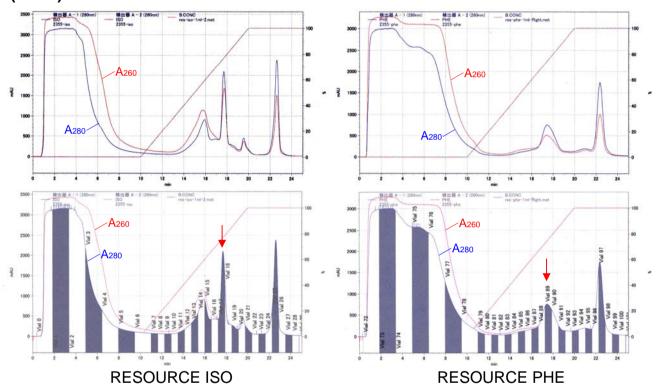
Step 3: Gel filtration column

↓

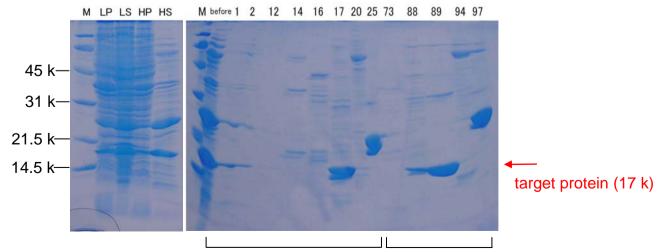
this protein was purified by a small number of purification steps!

Example 6

Protein category	Regulatory functions / Other , p				
M.W.	16,555	15 g			
Theoretical pI	9.5	Purified protein	24 mg		
$\varepsilon_{\rm M}~({\rm M}^{\text{-1}}{\rm cm}^{\text{-1}})$	10,200	Purification time	6 days		


(Methods)

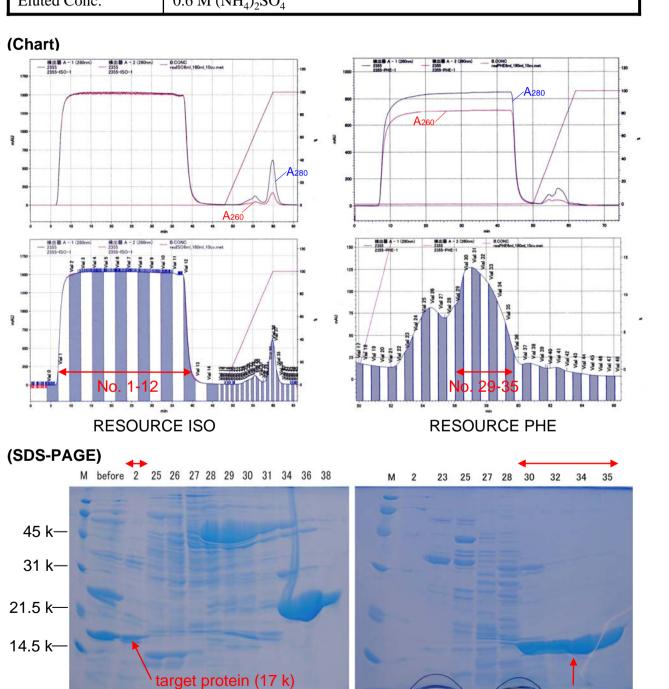
```
cell suspension in 20 mM Tris-HCl, 50 mM NaCl,
                            5 mM β-mercaptoethanol, pH 8.0, 70 ml
sonication (OUT PUT 8, DUTY 50 and 1 min × 10)
heat-treatment at 70°C for 10 min
on ice for 12 min
40,000 \text{ rpm} \times 1 \text{ h at } 4^{\circ}\text{C}
column scouting RESOURCE ISO and RESOURCE PHE
                                   (hydrophobic column)
RESOURCE ISO (hydrophobic column)
RESOURCE PHE (hydrophobic column)
   RESOURCE Q (anion exchange column)
   ↓ ← (desalting)
RESOURCE S (cation exchange column)
   \downarrow \leftarrow (concentration)
HiLoad 16/60 Superdex 75 prep. grade (gel filtration column)
   \downarrow \leftarrow (desalting, concentration)
protein concentration determination
```


Step 1: Column Scouting

Flow rate	1 ml / min	
Gradient (Volume)	$1.5 \rightarrow 0 \text{ M (NH}_4)_2 \text{SO}_4 (10 \text{ column volumes})$	
Buffer	A = 50 mM Na phosphate, 1.5 M (NH ₄) ₂ SO ₄ , pH 7.0 B = 50 mM Na phosphate, pH 7.0	
Eluted Conc.	RESOUREC ISO : $0.3 \text{ M (NH}_4)_2\text{SO}_4$ RESOURCE PHE: $0.4 \text{ M (NH}_4)_2\text{SO}_4$	

(Chart)

(SDS-PAGE)



RESOURCE ISO RESOURCE PHE

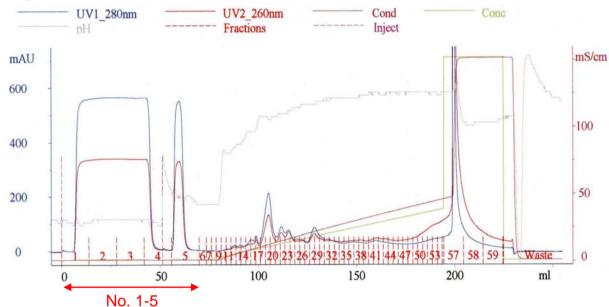
RESOURCE ISO (6 ml) column was selected.

Step 2: RESOURCE PHE (6 ml)

Flow rate	5 ml / min		
Gradient (Volume)	$1.5 \rightarrow 0 \text{ M (NH}_4)_2 \text{SO}_4 (10 \text{ column volumes})$		
Buffer	$A = 50 \text{ mM Na phosphate}, 1.5 \text{ M } (NH_4)_2SO_4, \text{ pH } 7.0$		
	B = 50 mM Na phosphate, pH 7.0		
Eluted Conc.	$0.6 \text{ M} (\text{NH}_4)_2 \text{SO}_4$		

RESOURCE ISO

RESOURCE PHE

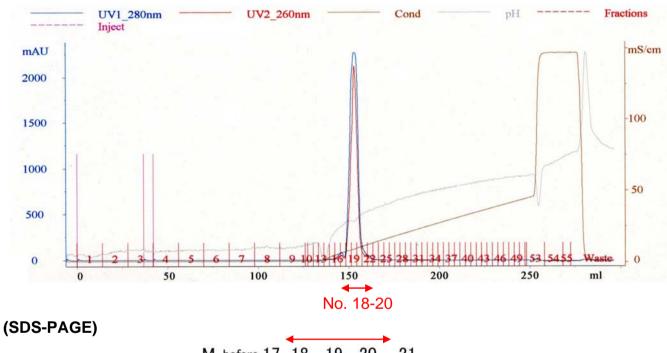

target protein (17 k)

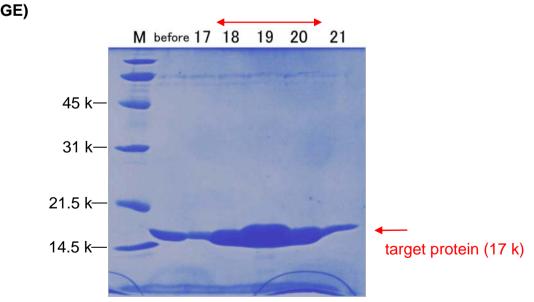
Fractions 1 to 12 (168 ml) of RESOURCE ISO were pooled, and applied to RESOURCE PHE. Fractions 29 to 35 (17.5 ml) of RESOURCE PHE were pooled, and desalted on a desalting column equilibrated with 20 mM Tris-HCl, pH 8.0.

Step 3: RESOURCE Q (6 ml)

Flow rate	5 ml / min		
Gradient (Volume)	$0 \rightarrow 0.5 \text{ M NaCl } (20 \text{ column volumes})$		
Buffer	A = 20 mM Tris-HCl, pH 8.0 B = 20 mM Tris-HCl, 2.0 M NaCl, pH 8.0		
Eluted Conc.	flow through		

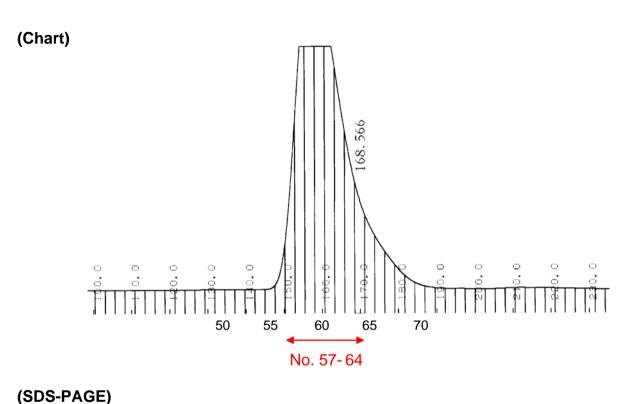
(SDS-PAGE)

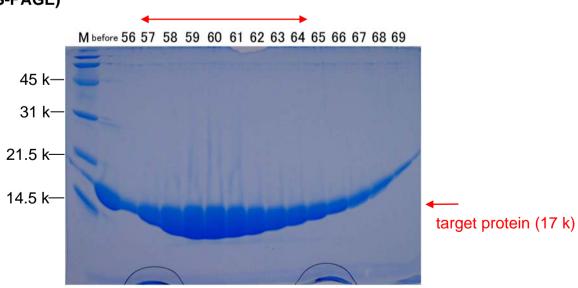



Fractions 1 to 5 (70 ml) were pooled and desalted on a desalting column equilibrated with 20 mM MES, pH 6.0.

Step 4: RESOURCE S (6 ml)

Flow rate	5 ml / min		
Gradient (Volume)	$0 \rightarrow 0.5 \text{ M NaCl } (20 \text{ column volumes})$		
Buffer	A = 20 mM MES, pH 6.0 B = 20 mM MES, 2.0 M NaCl, pH 6.0		
Eluted Conc.	0.9 M NaCl		

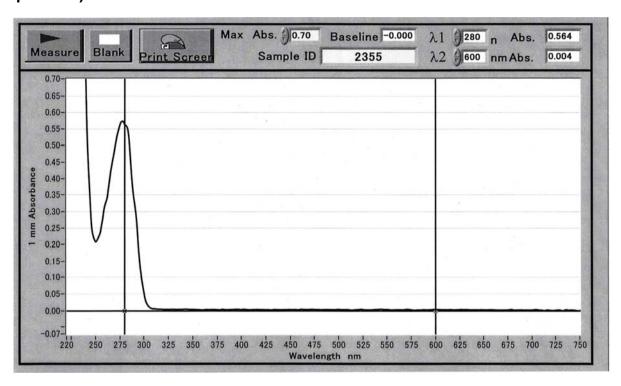




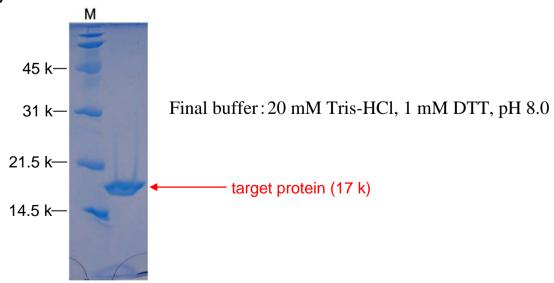
Fractions 18 to 20 (9 ml) were pooled, and concentrated from 9 ml to 5 ml by VIVA SPIN 5,000 MWCO.

Step 5: Superdex 75 (120 ml)

Flow rate	0.5 ml / min	
Buffer 20 mM Tris-HCl, 0.15 M NaCl, pH 8.0		
Elution volume	79 ml	



Fractions 57 to 64 (10.4 ml) were pooled and desalted on a desalting column equilibrated with 20 mM Tris-HCl, pH 8.0 and concentrated from 14 ml to 2.6 ml by VIVA SPIN 5,000 MWCO.


Step 6: Protein Concentration

$\varepsilon_{\rm M}$ $({\rm M}^{\text{-1}}{\rm cm}^{\text{-1}})$	Abs. (280 nm)	Dilution rate	Mol.conc. (M)	M.W.	Protein conc. (mg/ml)	Vol. (ml)	Total protein (mg)
10,200	0.56	10	5.5×10^{-4}	16,555	9.2	2.6	24

(UV spectrum)

(SDS-PAGE)

Point

The two types of ion exchange chromatography were effective!

- This protein behaved according to expectation from the theoretical pl.
- Purity improved as chromatography proceeded.

 Target protein was highly purified in these steps.