高度好熱菌由来 RecJ の機能解析

Functional analysis of the RecJ protein from Thermus thermophilus HB8

小寺 祐太郎 ¹, 若松 泰介 ², 中川 紀子 ^{1,3}, 倉光 成紀 ^{1,2,3}, 增井 良治 ^{1,3} Yutaro Kotera, Taisuke Wakamatsu, Noriko Nakagawa, Seiki Kuramitsu, Ryoji Masui (¹ 阪大・院理・生物科学, ² 阪大・院生命機能, ³ 理研・播磨研)

(¹ Dept. Biol. Sci,. Grad. Sch. Sci., Osaka Univ., ²Grad. Sch. Frontier Biosci., Osaka Univ., ³RIKEN Harima Inst.)

e-mail: karatati@bio.sci.osaka-u.ac.jp

DNA は紫外線などの外的要因、活性酸素などの内的要因により傷害を受ける。DNA の損傷は遺伝子の突然変異を引き起し、場合によっては生命を死に到らしめる。しかし、生体内にはそれを修復するため、塩基除去修復やミスマッチ修復、相同組換え修復といった機構が備わっている。それら修復系に関与している酵素の1つに RecJ タンパク質がある。RecJ は一本鎖 DNA 特異的な 5'-3' エキソヌクレアーゼ活性を有し、その活性発現には Mg²+ や Mn²+ などの2価の金属イオンを必要とする。RecJ ホモログは多くの原核生物に広く分布し、よく保存された 5 つのモチーフが存在する。私たちは Thermus thermophilus HB8由来 RecJ (ttRecJ) について、5つのモチーフを含む truncated ttRecJ (40-463 残基)の立体構造をすでに明らかにしている (Figure 1)。 truncated ttRecJ のドメイン間の溝に面した部位には Mn²+が結合しており、モチーフ内で完全に保存されているアミノ酸残基がその配位に働いている (Figure 2)。それらのアミノ酸残基が RecJ にとって重要であることは変異体解析によって示されているが、ヌクレアーゼ活性の反応機構においてどのような働きをしているかまでは明らかにされてない。また、T. thermophilus 内でどのような修復系で働いているかも不明である。そこで本研究では、ttRecJ の活性発現機構ならびに細胞内での機能について解析を行った。

まず完全長のttRecJを大腸菌内で発現させて精製し、xクレアーゼ活性の金属依存性を測定したところ、 Mg^{2+} 、 Mn^{2+} 、 Co^{2+} の存在下で活性が見られた。次に、金属イオンに配位しているアミノ酸残基に変異を導入した ttRecJ を作製した。現在、得られた変異体の活性測定を行っている。また、ttRecJ 遺伝子 (TTHA1167) の欠損株を作製し、UV 照射や過酸化水素に対する感受性の変化も調べており、それらの結果についても合わせて報告する。

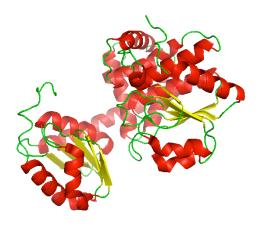


Figure 1 truncated ttRecJ の全体構造

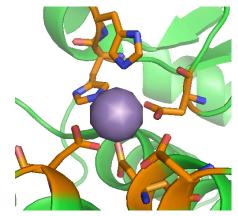


Figure 2 Mn²⁺ 近傍の残基